AREC 345: Global Poverty & Economic Development

Lecture 2:

The Problem of Causal Inference

Professor: Pamela Jakiela

Department of Agricultural and Resource Economics University of Maryland, College Park

Comparing Participant and Non-Participants

Example: young women from Nairobi slums who were invited to participate in a **microfranchising** program that provided vocational and life skills training and helped them to start small businesses (e.g. salons)

AREC 345: Global Poverty & Economic Development Lecture 2: The Problem of Causal Inference, Slide 5

Comparing Participant and Non-Participants

Only 60 percent of eligible applicants participate in the program

How do their incomes compare to those who didn't participate?

	Participation	in Program
	Did Program	No Program
Weekly income (in USD)	9.98	8.38
Living with a parent	0.49	0.43
Any work experience	0.57	0.51
Completed secondary school	0.39	0.44
Any vocational training	0.29	0.36

Incomes higher among participants, but there are other differences

 \Rightarrow Did the program **cause** the difference in income?

	Outcomes and Treatments				
		Alice	Betty		
F	Potential outcome without program: $Y_{0,i}$	8	12		
F	Potential outcome with program: $Y_{1,i}$	10	11		
٦	Freatment effect: $Y_{1,i} - Y_{0,i}$	2	-1		
F	Participates in the program?				
A	Actual income: Y _i				

Potential Outcomes: Example

What are we comparing when we compare Alice's income to Betty's?

$$Y_{Alice} - Y_{Betty} = Y_{1,Alice} - Y_{0,Betty}$$

$$=\underbrace{Y_{1,Alice}-Y_{0,Alice}}_{=2}+\underbrace{Y_{0,Alice}-Y_{0,Betty}}_{=-4}$$

Comparing those who choose treatment to those who do not conflates:

- $Y_{1,Alice} Y_{0,Alice}$ = treatment effect on Alice (who is treated)
- $Y_{0,Alice} Y_{0,Betty} =$ selection bias
 - Those who choose treatment and those who do not choose treatment would have different outcomes even in the absence of treatment

Terminology: Average Causal Effects

The average Y_i among program participants is the **conditional mean**:

$$AVG_n[Y_i|P_i=1] = \frac{1}{n_{P_i=1}} \sum_{i=1}^{n_{P_i=1}} Y_i$$

$$= \frac{1}{n_{P_i=1}} \sum_{i=1}^{n_{P_i=1}} Y_{1,i}$$

The conditional mean among non-participants is:

$$AVG_n[Y_i|P_i=0] = rac{1}{n_{P_i=0}} \sum_{i=1}^{n_{P_i=0}} Y_{0,i}$$

Random Assignment Eliminates Selection Bias

Conditional expectation:

 $E[Y_i|P_i=1]$

The conditional expectation of Y_i given a dummy variable $P_i = 1$, is the average of Y_i in the population that has $P_i = 1$.

 $E[Y_i|P_i=0]$

The conditional expectation of Y_i given a dummy variable $P_i = 0$, is the average of Y_i in the population that has $P_i = 0$.

When treatment is randomly assigned,

the treatment, control groups are random samples of a single population (e.g. the population of all eligible applicants for the program)

 $\Rightarrow E[Y_{0,i}|P_i = 1] = E[Y_{0,i}|P_i = 0] = E[Y_{0,i}]$

Expected outcomes are the same in the absence of the program

Random Assignment Eliminates Selection Bias

If treatment is random and $E[Y_{0,i}|P_i = 1] = E[Y_{0,i}|P_i = 0] = E[Y_{0,i}]$, the difference in means estimator gives us the average causal effect:

Difference in group means
$$= E[Y_i|P_i = 1] - E[Y_i|P_i = 0]$$

 $= E[Y_{1,i}|P_i = 1] - E[Y_{0,1}|P_i = 0]$

Adding in
$$\underbrace{-E[Y_{0,i}|P_i = 1] + E[Y_{0,i}|P_i = 1]}_{=0}$$
, we get:

Difference in group means

$$= E[Y_{1,i}|P_i = 1] - E[Y_{0,i}|P_i = 1] + E[Y_{0,i}|P_i = 1] - E[Y_{0,i}|P_i = 0]$$

$$=\underbrace{E[Y_{1,i}|P_i=1]-E[Y_{0,i}|P_i=1]}_{\text{average causal effect on participants}}+\underbrace{E[Y_{0,i}]-E[Y_{0,i}]}_{=0}$$

Study Guide: Key Terms

- average causal effect
- causality
- counterfactual
- difference in means
- law of large numbers
- mathematical expectation
- outcome variable
- potential outcomes
- selection bias
- treatment
- (un)conditional expectation
- (un)conditional mean